The evidence (as attested in a number of studies posted on this thread) is that in the case of the honey bee, under good conditions, that it is indeed pretty rapid. And so is subsequent population rebuild.
It does seem to be a fairly recent observation. More non-honeybee examples:
"When we think about natural selection, we think about it happening over hundreds, or thousands, of years," said Samuel Wasser, a conservation biologist at the University of Washington, who was not involved in the research. "The fact that this dramatic selection for tusklessness happened over 15 years is one of the most astonishing findings."
https://www.npr.org/2021/10/22/1048...ivory poaching,that will never develop tusks.------------------------------------
Abstract
In recent years, biologists have increasingly recognized that evolutionary change can occur rapidly when natural selection is strong; thus, real-time studies of evolution can be used to test classic evolutionary hypotheses directly. One such hypothesis is that negative interactions between closely related species can drive phenotypic divergence. Such divergence is thought to be ubiquitous, though well-documented cases are surprisingly rare. On small islands in Florida, we found that the lizard Anolis carolinensis moved to higher perches following invasion by Anolis sagrei and, in response, adaptively evolved larger toepads after only 20 generations. These results illustrate that interspecific interactions between closely related species can drive evolutionary change on observable time scales.
https://www.science.org/doi/abs/10.1126/science.1257008
---------------------------------
"Environmental change can drive hard-wired evolutionary changes in animal species in a matter of generations.
A University of Leeds-led study, published in the journal Ecology Letters, overturns the common assumption that evolution only occurs gradually over hundreds or thousands of years.
Instead, researchers found significant genetically transmitted changes in laboratory populations of soil mites in just 15 generations, leading to a doubling of the age at which the mites reached adulthood and large changes in population size. The results have important implications in areas such as disease and pest control, conservation and fisheries management because they demonstrate that evolution can be a game-changer even in the short-term.
Professor Tim Benton, of the University of Leeds’ Faculty of Biological Sciences, said: “This demonstrates that short-term ecological change and evolution are completely intertwined and cannot reasonably be considered separate. We found that populations evolve rapidly in response to environmental change and population management. This can have major consequences such as reducing harvesting yields or saving a population heading for extinction.”
https://www.leeds.ac.uk/news/article/3387/environmental_change_triggers_rapid_evolution
----------------------------------
Think evolution is a slow, gradual process? Tell that to fruit flies. In a new report published in Science, researchers from the University of Pennsylvania used a controlled field experiment to show that flies rapidly adapted to shifting environmental conditions with alterations throughout their genome and in a suite of physical characteristics.
Over the course of the experiment, which lasted four months, the researchers documented changes to 60% of the flies’ genome. With this direct observation of swift and continuous adaptation in response to the environment—a phenomenon known as adaptive tracking—the biologists have established a new paradigm for how to think about the time scale of evolution.
“It was an interesting idea but thought unlikely, until we showed it,” says Paul Schmidt, a biology professor in Penn’s School of Arts & Sciences and senior author on the paper.
“What makes this so exciting is the temporal resolution with which we’re seeing evolutionary processes in real time,” says Seth Rudman, a co-lead author on the publication who performed the work as a postdoctoral fellow at Penn and is now an assistant professor at Washington State University.
https://penntoday.upenn.edu/news/ra... of,response to natural environmental change.