Hivemaker.
Queen Bee
From the ABJ,could go some way to explaing why the Buckfast is so successful,while others failed due to disease and other pathogens,maybe imports have some benefits,rather than trying to stick to one breed of honey bee.
Why Do Promiscuous Queens
Produce Healthier Honey Bee
Colonies? Study Reveals
Surprising Clues
WELLESLEY, Mass. -- A new study out of Wellesley College sheds light on the link between genetic diversity and healthier bee colonies—by revealing the makeup of the microscopic life found inside the guts, on the bodies, and in the food of these insects. For the first time, scientists discovered that genetically diverse populations of worker bees, a result of the highly promiscuous mating behavior of queens, benefited from diverse symbiotic microbial communities, reduced loads of bacteria from pathogenic groups, and more bacteria related to helpful probiotic species—famous for their use by humans to ferment food. The novel study provides the first major insight into how honey bee colony health could be improved by diversity.
The dramatic disappearance of honey bee colonies in recent years has led to growing interest in studying unknown aspects of this important pollinator, in an effort to understand what might be done to help save them. According to the U.S. Department of Agriculture, a phenomenon known as Colony Collapse Disorder (CCD) is responsible in part for the loss of 30% or more of the U.S. honey bee population in every year since 2007. The continued loss of honey bees, which pollinate more than 400 crops worldwide, contribute to about a third of our diet, and add an estimated $15 billion in value to the country’s food supplies—could have devastating effects.
While the causes of the deadly disorder remain a mystery, researchers like Heather Mattila, a leading honey bee ecologist at Wellesley College, have long observed that a high level of genetic diversity within a colony—which occurs when a queen bee mates with multiple males—improves the colony’s overall health and productivity, though how colony members produce this effect was largely unknown.
Led by Mattila and Irene L.G. Newton, a microbiologist at Indiana University, the research team compared two groups of honey bee colonies. The first group consisted of genetically diverse populations, produced by promiscuous queen bees that had been inseminated by different mixes of 15 male bees. The second group of colonies was genetically uniform, comprised of offspring from queens mated with a single male each. Using 16S rRNA pyrosequencing, an advanced molecular technique that had never before been used to study active bacteria in honey bees, the scientists were able to identify and compare bacteria across the colonies. The results were astonishing.
The researchers found that diverse honey bee colonies showed a significantly greater variety of active bacterial species with 1,105 species, while only 781 species were found in uniform worker populations. Furthermore, active bacteria from genetically uniform colonies consisted of 127% more potential pathogens, while diverse colonies had 40% more potentially beneficial bacteria.
The team made another surprising discovery: four bacteria known to aid in food processing in other animals dominated bacterial communities in colonies, many of which had never been reported in honey bee colonies. Researchers identified Succinivibrionaceae, a group of fermenters in animals like cows; Oenococcus, which are used by humans to ferment wine; Paralactobacillus, used to ferment food; and Bifidobacterium, which is found in yogurt.
“We’ve never known how healthier bees are generated by genetic diversity, but this study provides strong clues,” said Mattila. “Our findings suggest that genetically diverse honey bees have the advantage of broader microbial communities, which may be key to improving colony health and nutrition—and to understanding factors that can mitigate honey bee decline.”
Newton explained the role these microbes may play, “We found that genetically diverse colonies have a more diverse, healthful, active bacterial community. Conversely, genetically uniform colonies had a higher activity of potential plant and animal pathogens in their digestive tracts.”
The discoveries are important because honey bees, like humans and other animals, depend on the helpful communities of bacteria that live within their guts. In honey bees, active bacteria serve a critical function – they aid in the transformation of pollen collected by worker bees into “bee bread,” a nutritious food that can be stored for long periods in colonies and provides honey bees with most of their essential nutrients. Most researchers believe that poor nutrition has hindered the ability of colonies to defend themselves against health problems, such as CCD.
Mattila, who has been investigating the benefits of genetic diversity in honey bees for seven years, was thrilled by these findings, which were made possible by incorporating Newton’s microbial expertise into the study. “It is our first insight into a means by which colony health could be improved by diversity.” She added, “It shows one of the many ways that the function of a honey bee colony is enhanced when a queen mates promiscuously, which is an unusual behavior for social insects. Most bees, ants, and wasp queens mate singly and produce colonies of closely related, single family workers. Honey bee queens are different in this regard, and this behavior has resulted in extremely productive colonies that dominate their landscape.”
Mattila’s earlier research had found that genetically diverse honey bee colonies are more productive, in part because their members forage at higher rates and more often use sophisticated communication methods, including waggle dancing, to direct nest mates to food. Maintaining diversity in honey bee populations is a challenge for commercial beekeepers, who have been selecting genetic lines for decades in an effort to promote desirable traits in bees—a practice that necessarily whittles down diversity.
Mattila shares her research with beekeeping groups, who she says are “intensely interested” and supportive of her research. She frequently speaks at national beekeeper association meetings and gives public lectures for people who simply want to know how they can help honey bees.
“I recommend that people advocate for bees and consider planting gardens that are friendly to pollinators. Bees should be promoted and not exterminated. I also encourage people to support local beekeepers by buying honey directly from them, which gives them more profit, and thus more flexibility to use techniques that are in the bees’ best interest, even if the methods are more intensive or costly.”
Is there hope yet for the plight of the honey bee? Mattila thinks so. “There is a large community of bee researchers in the United States and around the world, and we are doing everything we can to maximize the health of our most important pollinator.”
Increasing Genetic Diversity of
Honey Bees--A Necessity, Says
Bee-Breeder-Geneticist
Susan Cobey
Dept. of Entomology
University of California at Davis
DAVIS--Increasing the overall genetic diversity of honey bees will lead to healthier and hardier bees that can better fight off parasites, pathogens and pests, says bee breeder-geneticist Susan Cobey of the University of California, Davis and Washington State University.
Just as stock improvement has served the poultry, dairy and swine industries well, the beekeeping industry needs access “to stocks of origin or standardized evaluation and stock improvement programs,” Cobey said.
Cobey is the lead author of the chapter “Status of Breeding Practices and Genetic Diversity in Domestic U.S. Honey Bees” of the newly published book, Honey Bee Colony Health: Challenges and Sustainable Solution.
“The many problems that currently face the U.S. honey bee population have underscored the need for sufficient genetic diversity at the colony, breeding, and population levels,” wrote Cobey and colleagues Walter “Steve” Sheppard, professor and chair of the WSU Department of Entomology and David Tarpy of North Carolina State University, formerly a graduate student at UC Davis.
“Genetic diversity has been reduced by three distinct bottleneck events, namely the limited historical importation of a small subset sampling of a few honey bee subspecies, the selection pressure of parasites and pathogens (particularly parasitic mites) and the consolidated commercial queen-production practices that use a small number of queen mothers in the breeding population,” Cobey pointed out.
The honey bee, Apis mellifera, originated in the Old World where it diverged into more than two dozen recognized subspecies, they related. However, only nine of the more than two dozen Old World subspecies ever made it to the United States and only two of these are recognizable today.
European colonists brought one subspecies, Apis mellifera mellifera or “The Dark Bee” of Northern Europe, to America in 1622, establishing it in the Jamestown colony. The bee was the only honey bee present in the United States for the next 239 years (1622 until 1861).
The Italian or golden honey bee, Apis mellifera ligustica, was introduced into the United States in 1859 and is now the most common honey bee in the United States. “Currently available U.S. honey bees are primarily derived from two European subspecies, A. m. carnica and A. m. ligustica,” the bee scientists said.
The U.S. ban on the importation of bees in 1922 to ward off a tracheal mite (Acarapis woodi) further aggravated the genetic bottleneck. Today the No. 1 enemy of the beekeeping industry is the parasitic Varroa mite (Varroa destructor), which has played a major role in the crippling decline of the U.S. honey bee population.
Found in virtually all bee colonies in the United States, it feeds on bee blood, can transmit diseases, and generally weakens the bee immune system.
What’s being done? “In the U.S. the recognized need to increase genetic diversity and strengthen selection programs of commercial breeding stocks has resulted in collaborative efforts among universities, government researchers, and the queen industry,” according to Cobey, Sheppard and Tarpy. “The current challenges facing the beekeeping industry and new technologies being developed are pushing beekeeping into a new era.”
To increase genetic diversity in the U.S. honey bee gene pool, Cobey and Sheppard are importing honey bee germplasm or semen of several subspecies of European honey bees and inseminating virgin queens of domestic breeding stock. They are also working on diagnostic programs to assist beekeepers to assess colony health and to evaluate commercial breeding stocks.
Cobey, who teaches queen-bee rearing classes and queen bee instrumental insemination at UC Davis and WSU, joined UC Davis in May 2007. Her research focuses on identifying, selecting and enhancing honey bee stocks that show increasing levels of resistance to pests and diseases. Cobey developed the New World Carniolan stock, a dark, winter hardy race of honey bees, in the early 1980s by back-crossing stocks collected from throughout the United States and Canada to create a more pure strain.
Sheppard , who leads the Apis Molecular Systematics Laboratory at WSU, studies population genetics and evolution of honey bees, insect introductions and mechanisms of genetic differentiation. His work was featured in a recent edition of the Washington State University Magazine.
Tarpy, now an associate professor and Extension apiculturist, at North Carolina State University, received his doctorate in entomology from UC Davis in 2000. He studied with Robert Page, emeritus professor of entomology at UC Davis who later became the vice provost and dean of the College of Liberal Arts and Sciences and Foundation Professor of Life Sciences, Arizona State University.
Why Do Promiscuous Queens
Produce Healthier Honey Bee
Colonies? Study Reveals
Surprising Clues
WELLESLEY, Mass. -- A new study out of Wellesley College sheds light on the link between genetic diversity and healthier bee colonies—by revealing the makeup of the microscopic life found inside the guts, on the bodies, and in the food of these insects. For the first time, scientists discovered that genetically diverse populations of worker bees, a result of the highly promiscuous mating behavior of queens, benefited from diverse symbiotic microbial communities, reduced loads of bacteria from pathogenic groups, and more bacteria related to helpful probiotic species—famous for their use by humans to ferment food. The novel study provides the first major insight into how honey bee colony health could be improved by diversity.
The dramatic disappearance of honey bee colonies in recent years has led to growing interest in studying unknown aspects of this important pollinator, in an effort to understand what might be done to help save them. According to the U.S. Department of Agriculture, a phenomenon known as Colony Collapse Disorder (CCD) is responsible in part for the loss of 30% or more of the U.S. honey bee population in every year since 2007. The continued loss of honey bees, which pollinate more than 400 crops worldwide, contribute to about a third of our diet, and add an estimated $15 billion in value to the country’s food supplies—could have devastating effects.
While the causes of the deadly disorder remain a mystery, researchers like Heather Mattila, a leading honey bee ecologist at Wellesley College, have long observed that a high level of genetic diversity within a colony—which occurs when a queen bee mates with multiple males—improves the colony’s overall health and productivity, though how colony members produce this effect was largely unknown.
Led by Mattila and Irene L.G. Newton, a microbiologist at Indiana University, the research team compared two groups of honey bee colonies. The first group consisted of genetically diverse populations, produced by promiscuous queen bees that had been inseminated by different mixes of 15 male bees. The second group of colonies was genetically uniform, comprised of offspring from queens mated with a single male each. Using 16S rRNA pyrosequencing, an advanced molecular technique that had never before been used to study active bacteria in honey bees, the scientists were able to identify and compare bacteria across the colonies. The results were astonishing.
The researchers found that diverse honey bee colonies showed a significantly greater variety of active bacterial species with 1,105 species, while only 781 species were found in uniform worker populations. Furthermore, active bacteria from genetically uniform colonies consisted of 127% more potential pathogens, while diverse colonies had 40% more potentially beneficial bacteria.
The team made another surprising discovery: four bacteria known to aid in food processing in other animals dominated bacterial communities in colonies, many of which had never been reported in honey bee colonies. Researchers identified Succinivibrionaceae, a group of fermenters in animals like cows; Oenococcus, which are used by humans to ferment wine; Paralactobacillus, used to ferment food; and Bifidobacterium, which is found in yogurt.
“We’ve never known how healthier bees are generated by genetic diversity, but this study provides strong clues,” said Mattila. “Our findings suggest that genetically diverse honey bees have the advantage of broader microbial communities, which may be key to improving colony health and nutrition—and to understanding factors that can mitigate honey bee decline.”
Newton explained the role these microbes may play, “We found that genetically diverse colonies have a more diverse, healthful, active bacterial community. Conversely, genetically uniform colonies had a higher activity of potential plant and animal pathogens in their digestive tracts.”
The discoveries are important because honey bees, like humans and other animals, depend on the helpful communities of bacteria that live within their guts. In honey bees, active bacteria serve a critical function – they aid in the transformation of pollen collected by worker bees into “bee bread,” a nutritious food that can be stored for long periods in colonies and provides honey bees with most of their essential nutrients. Most researchers believe that poor nutrition has hindered the ability of colonies to defend themselves against health problems, such as CCD.
Mattila, who has been investigating the benefits of genetic diversity in honey bees for seven years, was thrilled by these findings, which were made possible by incorporating Newton’s microbial expertise into the study. “It is our first insight into a means by which colony health could be improved by diversity.” She added, “It shows one of the many ways that the function of a honey bee colony is enhanced when a queen mates promiscuously, which is an unusual behavior for social insects. Most bees, ants, and wasp queens mate singly and produce colonies of closely related, single family workers. Honey bee queens are different in this regard, and this behavior has resulted in extremely productive colonies that dominate their landscape.”
Mattila’s earlier research had found that genetically diverse honey bee colonies are more productive, in part because their members forage at higher rates and more often use sophisticated communication methods, including waggle dancing, to direct nest mates to food. Maintaining diversity in honey bee populations is a challenge for commercial beekeepers, who have been selecting genetic lines for decades in an effort to promote desirable traits in bees—a practice that necessarily whittles down diversity.
Mattila shares her research with beekeeping groups, who she says are “intensely interested” and supportive of her research. She frequently speaks at national beekeeper association meetings and gives public lectures for people who simply want to know how they can help honey bees.
“I recommend that people advocate for bees and consider planting gardens that are friendly to pollinators. Bees should be promoted and not exterminated. I also encourage people to support local beekeepers by buying honey directly from them, which gives them more profit, and thus more flexibility to use techniques that are in the bees’ best interest, even if the methods are more intensive or costly.”
Is there hope yet for the plight of the honey bee? Mattila thinks so. “There is a large community of bee researchers in the United States and around the world, and we are doing everything we can to maximize the health of our most important pollinator.”
Increasing Genetic Diversity of
Honey Bees--A Necessity, Says
Bee-Breeder-Geneticist
Susan Cobey
Dept. of Entomology
University of California at Davis
DAVIS--Increasing the overall genetic diversity of honey bees will lead to healthier and hardier bees that can better fight off parasites, pathogens and pests, says bee breeder-geneticist Susan Cobey of the University of California, Davis and Washington State University.
Just as stock improvement has served the poultry, dairy and swine industries well, the beekeeping industry needs access “to stocks of origin or standardized evaluation and stock improvement programs,” Cobey said.
Cobey is the lead author of the chapter “Status of Breeding Practices and Genetic Diversity in Domestic U.S. Honey Bees” of the newly published book, Honey Bee Colony Health: Challenges and Sustainable Solution.
“The many problems that currently face the U.S. honey bee population have underscored the need for sufficient genetic diversity at the colony, breeding, and population levels,” wrote Cobey and colleagues Walter “Steve” Sheppard, professor and chair of the WSU Department of Entomology and David Tarpy of North Carolina State University, formerly a graduate student at UC Davis.
“Genetic diversity has been reduced by three distinct bottleneck events, namely the limited historical importation of a small subset sampling of a few honey bee subspecies, the selection pressure of parasites and pathogens (particularly parasitic mites) and the consolidated commercial queen-production practices that use a small number of queen mothers in the breeding population,” Cobey pointed out.
The honey bee, Apis mellifera, originated in the Old World where it diverged into more than two dozen recognized subspecies, they related. However, only nine of the more than two dozen Old World subspecies ever made it to the United States and only two of these are recognizable today.
European colonists brought one subspecies, Apis mellifera mellifera or “The Dark Bee” of Northern Europe, to America in 1622, establishing it in the Jamestown colony. The bee was the only honey bee present in the United States for the next 239 years (1622 until 1861).
The Italian or golden honey bee, Apis mellifera ligustica, was introduced into the United States in 1859 and is now the most common honey bee in the United States. “Currently available U.S. honey bees are primarily derived from two European subspecies, A. m. carnica and A. m. ligustica,” the bee scientists said.
The U.S. ban on the importation of bees in 1922 to ward off a tracheal mite (Acarapis woodi) further aggravated the genetic bottleneck. Today the No. 1 enemy of the beekeeping industry is the parasitic Varroa mite (Varroa destructor), which has played a major role in the crippling decline of the U.S. honey bee population.
Found in virtually all bee colonies in the United States, it feeds on bee blood, can transmit diseases, and generally weakens the bee immune system.
What’s being done? “In the U.S. the recognized need to increase genetic diversity and strengthen selection programs of commercial breeding stocks has resulted in collaborative efforts among universities, government researchers, and the queen industry,” according to Cobey, Sheppard and Tarpy. “The current challenges facing the beekeeping industry and new technologies being developed are pushing beekeeping into a new era.”
To increase genetic diversity in the U.S. honey bee gene pool, Cobey and Sheppard are importing honey bee germplasm or semen of several subspecies of European honey bees and inseminating virgin queens of domestic breeding stock. They are also working on diagnostic programs to assist beekeepers to assess colony health and to evaluate commercial breeding stocks.
Cobey, who teaches queen-bee rearing classes and queen bee instrumental insemination at UC Davis and WSU, joined UC Davis in May 2007. Her research focuses on identifying, selecting and enhancing honey bee stocks that show increasing levels of resistance to pests and diseases. Cobey developed the New World Carniolan stock, a dark, winter hardy race of honey bees, in the early 1980s by back-crossing stocks collected from throughout the United States and Canada to create a more pure strain.
Sheppard , who leads the Apis Molecular Systematics Laboratory at WSU, studies population genetics and evolution of honey bees, insect introductions and mechanisms of genetic differentiation. His work was featured in a recent edition of the Washington State University Magazine.
Tarpy, now an associate professor and Extension apiculturist, at North Carolina State University, received his doctorate in entomology from UC Davis in 2000. He studied with Robert Page, emeritus professor of entomology at UC Davis who later became the vice provost and dean of the College of Liberal Arts and Sciences and Foundation Professor of Life Sciences, Arizona State University.